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Outline
• Overview
• Decompositions, array/loop transformations
• Resolving adjacent and global dependencies
• Partial parallelization
• Nesting
• I/O
• Building and running an SMS program
• Debugging support
• Performance optimization
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Overview

• Extensive documentation available at:
www-ad.fsl.noaa.gov/ac/sms.html

• Web-site includes a link to the SMS User’s 
Guide.  Latest public version is 2.8.  I have 
provided a PDF version of version 2.9 by 
email to Mark

http://www-ad.fsl.noaa.gov/ac/sms.html
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SMS Serial Code
        integer IM, i                                             
        parameter(IM = 15)     
CSMS$DECLARE_DECOMP(my_dh, 1) 
CSMS$DISTRIBUTE(my_dh, <IM>) BEGIN                              
        real x(IM), y(IM), xsum                                        
CSMS$DISTRIBUTE END 
                
CSMS$CREATE_DECOMP (my_dh, <IM>, <2>) 
        open (10, file = ’x_in.dat’, form=’unformatted’) 
        read (10) x       
CSMS$PARALLEL(my_dh, <i>) BEGIN                                       
        do 100 i = 3, 13 
          y(i) = x(i) - x(i-1) - x(i+1) - x(i-2) - x(i+2) 
  100   continue 
CSMS$HALO_UPDATE(y)                                                      
CSMS$CHECK_HALO(y, ’before loop 200’) 
        do 200 i = 3, 13 
           x(i) = y(i) + y(i-1) + y(i+1) + y(i-2) + y(i+2) 
  200   continue 
CSMS$COMPARE_VAR(x, ’after loop 200’) 
        xsum = 0.0 
        do 300 i = 1, 15 
           xsum = xsum + x(i) 
  300   continue 
CSMS$REDUCE(xsum, SUM) 
CSMS$PARALLEL END 
        print *,’xsum = ’,xsum 
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Overview

• SMS provides directives for:
– Decompositions and Array bound, Loop 

Transformations
• CSMS$DECLARE_DECOMP
• CSMS$CREATE_DECOMP
• CSMS$DISTRIBUTE
• CSMS$PARALLEL
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Overview

• SMS provides directives for:
– Resolving adjacent dependencies

• CSMS$HALO_UPDATE

– Resolving global dependencies
• CSMS$REDUCE

– Partial parallelization
• CSMS$SERIAL
• CSMS$TO_LOCAL
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Overview

• SMS provides directives for:
– Boundary conditions

• CSMS$GLOBAL_INDEX

– Formatted output
• CSMS$PRINT_MODE

– Debugging
• CSMS$COMPARE_VAR
• CSMS$CHECK_HALO
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Overview

• SMS provides directives for:
– Nesting

• CSMS$SET_NEST_LEVELS
• CSMS$SET_TRANSFER_INTERPOLATE
• CSMS$TRANSFER

– Performance optimization
• CSMS$HALO_COMP
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Overview

• Supported machines 
– SGI O3K, Altix
– SUN UltraSparc
– IBM SP
– DEC Alpha
– HP Superdome
– LINUX Clusters
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Overview

• SMS accepts ANSI FORTRAN77 code plus 
FORTRAN90 syntax including:
– real*8, integer*8, (etc.)
– do/end do
– while statement
– namelists
– Whole array assignments

real x(10)
x = 1.0

– Include files
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Overview

• More FORTRAN90 syntax:
– Allocatable arrays
– Pointers
– F90 variable declarations
integer, intent(in) :: i1(:)

– Modules (partial support)
– Fixed and free format
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Overview

• SMS directives
– Start with CSMS$ (!SMS$ for free format)
– Case insensitive
– May be no more than 72 characters per line
– Can continue to another line: CSMS$>
– May be inserted into FORTRAN include/module 

files
– Can apply to multiple lines using begin/end syntax
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Outline
• Overview
• Decompositions, array/loop transformations
• Resolving adjacent and global dependencies
• Partial parallelization
• Nesting
• I/O
• Building and running an SMS program
• Debugging support
• Performance optimization
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Decomposition Directives

• Overview
– CSMS$DECLARE_DECOMP makes user defined 

decomposition "name" visible

– CSMS$CREATE_DECOMP initializes SMS data 
structures

– CSMS$DISTRIBUTE specifies how each array is 
decomposed
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Decomposition Directives

• CSMS$DECLARE_DECOMP
– Functionality

• A declarative (not executable) directive
• Makes decomposition "name" visible to other directives

– Declares internal SMS data structures
• Tells SMS number of decomposed dimensions (at most 2 

supported currently)
• Only one needed per decomposition
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Decomposition Directives

• CSMS$DECLARE_DECOMP
– Syntax, dynamic memory
CSMS$DECLARE_DECOMP(dh, num_decomposed_dims)

– Static memory discussed in the user’s guide
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Decomposition Directives

• CSMS$CREATE_DECOMP
– Functionality

• An “executable” directive that should be placed at the 
program beginning

• Tells SMS 
– Global sizes of decomposition dimensions
– Maximum halo widths (sizes of largest stencil)

• Initializes internal SMS data structures
• Generates process local memory layout
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Decomposition Directives

• CSMS$CREATE_DECOMP
– Syntax:

CSMS$CREATE_DECOMP(dh, 
CSMS$>    <ddim1_global_size, ddim2_global_size>,
CSMS$>    <ddim1_halo_width,  ddim2_halo_width>)

ddim1_global_size is the global size of the 1st
decomposed dimension

ddim2_global_size is the global size of the 2nd
decomposed dimension

ddim1_halo_width should be set to the maximum 
stencil size over the entire model for the 1st
decomposed dimension (also for ddim2_halo_wdith)
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Decomposition Directives
• CSMS$DISTRIBUTE

– Functionality
• A declarative (not executable) directive
• Specifies how arrays are decomposed
• Replaces array declarations and allocations with process 

local equivalents
• Associates arrays with decompositions:

– Communication directives such as HALO_UPDATE, 
SERIAL, CHECK_HALO, COMPARE_VAR

– Used for Fortran I/O
• Many needed per decomposition
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Decomposition Directives

• CSMS$DISTRIBUTE
– Syntax:
CSMS$DISTRIBUTE(dh, <ddim1_tag>, <ddim2_tag>) BEGIN

<serial code array declarations>
CSMS$DISTRIBUTE END
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Simple Decomposition Example:  
Dynamic Memory

• 2D dynamic memory array decomposed 
in the first dimension

CSMS$DECLARE_DECOMP(my_dh, 1)

integer, parameter :: IM = 15
integer, parameter :: JM = 10

CSMS$DISTRIBUTE(my_dh, <IM>) BEGIN
real :: x(IM,JM)

CSMS$DISTRIBUTE END

CSMS$CREATE_DECOMP(my_dh, <IM>, <0>)
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Simple Decomposition Example:  
Dynamic Memory

CSMS$DISTRIBUTE(my_dh, <IM>) BEGIN
C Rollout
c-SMS real :: x(IM,JM)

real x(local_start:local_end, JM)
CSMS$DISTRIBUTE END

CSMS$CREATE_DECOMP(my_dh, <IM>, <0>)
call SMS_DECOMP(…)
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Simple Decomposition Example
P2P1 P3

Local Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Serial Declaration: real x(15,10)

Parallel Declaration, P1: real x( 1: 5,10)
Parallel Declaration, P2: real x( 6:10,10)
Parallel Declaration, P3: real x(11:15,10)
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2-D Decomposition Example
• Two decomposed dimensions, 3D array

– 1st and 2nd dimensions of x1 are 
decomposed using the 1st and 2nd

dimensions of my_dh

CSMS$DECLARE_DECOMP(my_dh, 2)
CSMS$DISTRIBUTE(my_dh, <IM>, <JM>) begin

real :: x1(IM,JM,KM)
CSMS$DISTRIBUTE end

C Rollout
real x1(start1:end1, start2:end2, KM))

PE Layout

dim2

dim1

dim3

Array dims
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Loop Transformation Directive

• CSMS$PARALLEL
– Tells SMS where/how loops need to be translated 

into their parallel equivalents
– Defines a “parallel region”

• Provides default decomposition “context” for other 
directives

– User specifies loop index variables to guide 
translation
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Loop Transformation Directive

• CSMS$PARALLEL
– Syntax:
CSMS$PARALLEL(dh, <ddim1_loop_var,
CSMS$>             ddim2_loop_var>) BEGIN

< CODE >
CSMSPARALLEL END
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Loop Transformation
C “dh” is a 1D decomposition
CSMS$PARALLEL(dh, <i>) BEGIN 
... 
      do i=1,15 
... 
CSMS$PARALLEL END 
 
 
C conceptual rollout 
C P1 -->  
      do i=1,5 

C P2 -->  
      do i=6,10 

C P3 -->  
      do i=11,15 
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Loop Transformation

C “dh” is a 1D decomposition
CSMS$PARALLEL(dh, <i>) BEGIN 
... 
      do i=14,15 
... 
CSMS$PARALLEL END 
 
 
C conceptual rollout 
C P1, P2 -->  
      do NOTHING 

C P3 -->  
      do i=14,15 
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Boundary Conditions
• CSMS$GLOBAL_INDEX

– Functionality
• Ensures that assignment statements execute only on 

appropriate process(es)

– Syntax:
CSMS$GLOBAL_INDEX(ddim1, ddim2)
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Boundary Conditions
C Array x is decomposed
      real x(15) 
CSMS$GLOBAL_INDEX(1) BEGIN 
      x(8) = 0.0 
CSMS$GLOBAL_INDEX END 
 
 
 
 
C Conceptual rollout 
C P1 --> 
      do NOTHING 
C P2 --> 
      x(8) = 0.0 
C P3 --> 
      do NOTHING 

6 7 8 9 10

P2
real x(6:10)
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Outline
• Overview
• Decompositions, array/loop transformations
• Resolving adjacent and global dependencies
• Partial parallelization
• Nesting
• I/O
• Building and running an SMS program
• Debugging support
• Performance optimization
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Adjacent Dependencies

x(i,j) = y(i,j) + y(i+1,j) + y(i-1,j) + y(i,j-1) + y(i,j+1)

“Stencil”:  x(i,j) depends on:

y(i-1,j)

y(i,j)

y(i,j+1)

y(i+1,j)

y(i,j-1)
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Off-Process References Due To 
Adjacent Dependencies

P2P1 P3
Communication

needed

Communication
needed

y(i,j) = x(i,j) + x(i+1,j) + x(i-1,j)
+ x(i,j+1) + x(i,j-1)
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Some Terminology

interior region data

lower 
halo 
region

upper 
halo 
region

halo region data

P2P1 P3
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Halo Region Update

Halo Thickness = 1

Not
Used

Not
Used

P2P1 P3

Global Index 4 5321 6 6 7 8 9 105 11 11 12 15141310
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Halo Update Directive

• CSMS$HALO_UPDATE
– Functionality

• HALO_UPDATE data with neighboring processes to 
enable finite difference calculations

• Sends appropriate data to neighbors
• Stores received data in halo regions
• HALO_UPDATEs are aggregated together to reduce 

latency: CSMS$HALO_UPDATE(x,y)
• Other optimizations discussed later

– Syntax:
CSMS$HALO_UPDATE(arr1, arr2, ...) 
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1-D Halo Update Example
Halo Thickness 1

integer, parameter :: IM=15
integer, parameter :: JM=10

CSMS$DECLARE_DECOMP(my_dh, 1)
CSMS$DISTRIBUTE(my_dh, <IM>) BEGIN

real x(IM, JM)
CSMS$DISTRIBUTE END
CSMS$CREATE_DECOMP(my_dh, <IM>, <1>)
CSMS$HALO_UPDATE(x)  ! does the communication
C Rollout

call SMS_HALO_UPDATE(x)
do j = 1, JM

do i = 1, IM
y(i,j) = x(i,j) + x(i+1,j) + x(i-1,j)

+ x(i,j+1) + x(i,j-1)
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Adjacent Dependencies

x(i,j) = y(i,j) + y(i+1,j) + y(i+2,j) + y(i,j+1) + y(i,j+2)
+ y(i-1,j) + y(i-2,j) + y(i,j-1) + y(i,j-2)
+ y(i+1,j+1) + y(i+1,j-1)
+ y(i-1,j+1) + y(i-1,j-1)

“Stencil”:  x(i,j) depends on:
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Halo Region Update

Halo Thickness = 2

Not
Used

Not
Used

P2P1 P3

Global Index 4 5321 6 7 11 12 1514134 6 7 8 9 10 1095 11 12
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1-D Halo Update Example
Halo Thickness 2

integer, parameter :: IM=15
integer, parameter :: JM=10

CSMS$DECLARE_DECOMP(my_dh, 1)
CSMS$DISTRIBUTE(my_dh, <IM>) BEGIN

real x(IM, JM)
CSMS$DISTRIBUTE END
CSMS$CREATE_DECOMP(my_dh, <IM>, <2>)
CSMS$HALO_UPDATE(x)

do j = 1, JM
do i = 1, IM

y(i,j) = x(i,j) + x(i+1,j) + x(i-2,j)
+ x(i,j+1) + x(i,j-2)



December 2004 SMS Training Course 44

2D Halo Update

SMS Directive: CSMS$HALO_UPDATE
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2D Halo Update

SMS Directive: CSMS$HALO_UPDATE
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2D Halo Update

SMS Directive: CSMS$HALO_UPDATE
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2D Halo Update

SMS Directive: CSMS$HALO_UPDATE
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2-D Halo Update Example
Halo Thickness 2

integer, parameter :: IM=15
integer, parameter :: JM=10

CSMS$DECLARE_DECOMP(my_dh, 2)
CSMS$DISTRIBUTE(my_dh, <IM>, <JM>) BEGIN

real x(IM, JM)
CSMS$DISTRIBUTE END
CSMS$PARALLEL(my_dh, <IM>, <JM>) BEGIN
CSMS$CREATE_DECOMP(my_dh, <IM,JM>, <2,2>)
CSMS$HALO_UPDATE(x)

do j = 1, JM
do i = 1, IM

y(i,j) = x(i,j) + x(i+1,j) + x(i-2,j)
+ x(i,j+1) + x(i,j-2)
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Global Dependencies

• When you need a global maximum, minimum 
or summation across all processes then use 
the directive CSMS$REDUCE
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“Inexact” Summation

x

P1 P2 P3

1 3 4 52 6 8 9 107 11 13 14 1512

xsum xsum xsum

xsum

P1

P2

P3

CSMS$PARALLEL(my_dh, <i>) BEGIN
      xsum = 0.0 
      do i=1,15 
         xsum = xsum + x(i) 
      enddo 
CSMS$REDUCE(xsum, SUM) 
CSMS$PARALLEL END 
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Reduction Directives

• CSMS$REDUCE

– Functionality
• Determine MAX, MIN or SUM over all processes via 

communication
• Reduction done "in place“
• Reductions are aggregated together to reduce latency

– General Syntax:
CSMS$REDUCE(non_decomposed_var1,non_decomposed_var2, OP)

– “OP” = “SUM”, “MAX”, or “MIN”
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Reductions (continued)

• Summation details
– Compute "local sum" on each process
– Sum "local sums" over processors to get final 

result
– Results differ slightly for different numbers of 

processes with floating-point data
• Floating-point addition is NOT associative

• Use BEGIN-END form of the CSMS$REDUCE
directive to get “bitwise-exact” results
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Bitwise-exact Summation
P1 P2 P3

1 3 4 52 6 8 9 107 11 13 14 1512
x

xsum

P1

P2

P3

xglobal

“gather”

11 151413126 7 9 101 3 4 52

CSMS$PARALLEL(my_dh, <i>) BEGIN
      xsum = 0.0 
CSMS$REDUCE(xsum, SUM) BEGIN 
      do i=1,15 
         xsum = xsum + x(i) 
      enddo 
CSMS$REDUCE END 
CSMS$PARALLEL END 
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Bitwise-exact Summation
C Rollout 
CSMS$PARALLEL(my_dh, <i>) BEGIN 
      xsum = 0.0 
CSMS$REDUCE(xsum, SUM) BEGIN 
c-SMS      do i=1,15 
c-SMS         xsum = xsum + x(i) 
c-SMS      enddo 
      call SMS_GATHER(x,x_global) 
      do I = 1, 15 
        xsum = xsum + x_global(i) 
      end do 
      call SMS_BROADCAST(xsum) 
CSMS$REDUCE END 
CSMS$PARALLEL END 
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Bitwise-exact Summation
• CSMS$REDUCE

– Functionality
• Use this form when debugging because you can check if 

model solutions are bitwise exactly what you expect
• Addresses floating point addition round-off error
• Result is independent of number of processes
• Performance penalty
• Activated when environment variable SMS_BITWISE is 

EXACT
• Otherwise, reverts to standard behavior 

– Syntax for bitwise exact form:
CSMS$REDUCE(non_decomposed_var, SUM) BEGIN

CODE
CSMS$REDUCE END
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Outline
• Overview
• Decompositions, array/loop transformations
• Resolving adjacent and global dependencies
• Partial parallelization
• Nesting
• I/O
• Building and running an SMS program
• Debugging support
• Performance optimization
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Partial Parallelization:
SERIAL

CSMS$SERIAL BEGIN
SERIAL CODE...

CSMS$SERIAL END

“gather”

“scatter”

“broadcast”
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Partial Parallelization:
SERIAL

• CSMS$SERIAL
– Functionality

• Code between BEGIN and END executed on one 
designated “root” process

• Useful when 
– other SMS directives cannot easily be applied to a 

piece of serial code and/or
– Efficient performance is not critical (i.e. during 

initialization)
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Partial Parallelization:
SERIAL

• CSMS$SERIAL
– Syntax:
CSMS$SERIAL([communication specifications]) BEGIN
Serial Code

CSMS$SERIAL END

– Use “communication specifications” to improve 
performance

• Discussed later…
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Partial Parallelization:
SERIAL

CSMS$DISTRIBUTE(my_dh, <IM>) BEGIN 
        real x(IM) 
        real y(IM) 
CSMS$DISTRIBUTE END 
        y = 2.0 
CSMS$SERIAL BEGIN 
        open(10, file=’f0’, form=’unformatted’) 
        open(11, file=’f1’, form=’unformatted’) 
        do ind = 4, 5 
          read (10) x(ind) 
          write(11) y(ind) 
        end do 
        close(10) 
        close(11) 
CSMS$SERIAL END 
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Terminology Reminder

interior region data

lower 
halo 
region

upper 
halo 
region

halo region data

P2P1 P3
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Partial Parallelization:
TO_LOCAL(interior)

• In NFS and other models there are 
subroutines which are:
– Hard to parallelize  

• In NFS we want a 2-dimensional decomposition
• But this decomposition cannot be applied to collapsed 

loops and arrays such as in CUPKUO

– Have no dependencies (“embarrassingly parallel”)
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Partial Parallelization:
TO_LOCAL(interior)

• In such cases, just the interior (no halo 
points) of decomposed arrays can be passed 
to these subroutines

• The correct process local array sizes must 
also be passed

• CSMS$TO_LOCAL with the “interior” option 
handles this case
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Partial Parallelization:
TO_LOCAL(interior)

 
      program to_local 
      integer, parameter :: IM = 15 
      integer, parameter :: JM = 10 
      integer IMJM 
 
      real x(IM,JM) 
 
      IMJM = IM*JM 
      call EMBARRASSINGLY_PARALLEL(X, IMJM) 
 
      end 
 
      subroutine EMBARRASSINGLY_PARALLEL(X, IMJM) 
      integer IMJM 
      real X(IMJM) 
      do I = 1, IMJM 
        X(I) = 0.0 
      end do 
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Partial Parallelization:
TO_LOCAL(interior)

 

      program to_local 
      integer, parameter :: IM = 15 
      integer, parameter :: JM = 10 
      integer IMJM 
CSMS$DECLARE_DECOMP(my_dh, 2) 
CSMS$DISTRIBUTE(my_dh, <IM>, <JM>) BEGIN 
      real x(IM,JM) 
CSMS$DISTRIBUTE END 
CSMS$TO_LOCAL(my_dh : <1,IM:interior>, <2,JM:interior>) BEGIN 
      IMJM = IM*JM 
      call EMBARRASSINGLY_PARALLEL(X, IMJM) 
CSMS$TO_LOCAL END 
      end 
 
      subroutine EMBARRASSINGLY_PARALLEL(X, IMJM) 
      integer IMJM 
      real X(IMJM) 
      do I = 1, IMJM 
        X(I) = 0.0 
      end do 
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Partial Parallelization:
TO_LOCAL(interior) 

Rollout 
 
CSMS$TO_LOCAL(my_dh : <1,IM:interior>, <2,JM:interior>) BEGIN 
 
      IMJM = DECOMP_DIM_1_LOCAL_SIZE * DECOMP_DIM_2_LOCAL_SIZE 
 
      call EMBARRASSINGLY_PARALLEL( 
     & X(DDIM1_INTERIOR_START:DDIM1_INTERIOR_END, 
     &   DDIM2_INTERIOR_START:DDIM2_INTERIOR_END), IMJM) 
 
CSMS$TO_LOCAL END 
 
      end 
 
 



December 2004 SMS Training Course 67

Outline
• Overview
• Decompositions, array/loop transformations
• Resolving adjacent and global dependencies
• Partial parallelization
• Nesting
• I/O
• Building and running an SMS program
• Debugging support
• Performance optimization
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Nesting Overview

• SMS handles nested models for fixed nest locations 
(no moving nests currently)

• Nesting is supported in both directions (parent to 
child and child to parent) for multiple nests

• It is assumed that nested grid interpolation is linear, 
i.e. child grid points are computed by a linear 
combination of parent grid points

• The serial code must implement these linear 
combinations in a particular way shown a bit later
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Nesting Interpolation Example
FINE_COORDS(2,4)=W1*COARSE_COORDS(3,4) + W2*COARSE_COORDS(4,4) +

W3*COARSE_COORDS(3,5) + W4*COARSE_COORDS(4,5)

MAX_STENCIL_POINTS=4
NUM_FINE_POINTS=48

j

i

coarse_coords(:,1,ifp)=(/3,4/)
coarse_coords(:,2,ifp)=(/4,4/)
corase_coords(:,3,ifp)=(/3,5/)
coarse_coords(:,4,ifp)=(/4,5/)

COARSE_NEST

FINE_NEST

coarse_weights(:, ifp)=(/W1,W2,W3,W4/)

fine_coords(:,ifp)=(/2,4/)
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Nesting Serial Code - Setup
         coarse_weights = 0.0 
  
         ifp = 0 
         do j=1,jm_fine 
           do i=1,im_fine 
             ifp = ifp + 1 
             fine_coords(1,ifp) = i 
             fine_coords(2,ifp) = j 
  
 C Set up coarse points needed for interpolation... 
             coarse_coords(1,1,ifp) = ioffset + ((i-1)/3) 
             coarse_coords(2,1,ifp) = joffset + ((j-1)/3) 
             . 
             . 
 C Compute weights... 
             if ((mod(i,3).eq.1).and.(mod(j,3).eq.1)) then 
               coarse_weights(1,ifp) = 0.67 
             endif 
  
             if ((mod(i,3).eq.2).and.(mod(j,3).eq.1)) then 
             . 
             . 
 
           end do 
         end do 
  
         num_fine_points   = ifp 
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Nesting Serial Code - Interpolate

       do k = 1, km 
         do ifp=1,num_fine_points 
           nest_fine(fine_coords(1,ifp),fine_coords(2,ifp),k)= 0.0 

 
           do icp=1,max_coarse_points ! 4 for bi-linear interpolation 
 
             if (coarse_weights(icp,ifp).ne.0.0) then 
               nest_fine(fine_coords(1,ifp),fine_coords(2,ifp),k)= 
      &        nest_fine(fine_coords(1,ifp),fine_coords(2,ifp),k)+ 
      &          (coarse_weights(icp,ifp) * 
      &           nest_coarse(coarse_coords(1,icp,ifp), 
      &             coarse_coords(2,icp,ifp),k)) 
             endif 
           end do 
         end do 
       end do 
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Nesting Directives

• CSMS$DECLARE_DECOMP(grid_dh(3),2)

– Specify 3 nests for the decomposition
– This is a 2-dimensional decomposition 
as we have seen before

• CSMS$CREATE_DECOMP(grid_dh(1),<im1,jm1>, <1,1>)
• CSMS$CREATE_DECOMP(grid_dh(2),<im2,jm2>, <1,1>)
• CSMS$CREATE_DECOMP(grid_dh(3),<im3,jm3>, <1,1>)

– Create the decompositions with the 
appropriate nest sizes
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Nesting Directives

• CSMS$SET_NEST_LEVELS(2,3)

– In models such as NFS, a single 
subroutine handles nesting 
interpolation between any pair of 
nests

– SMS provides a means for directives 
to refer to parameterized (instead of 
absolute) nest levels

– This example says that the 
parameterized nest levels are 2 and 3
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Nesting Directives

CSMS$DISTRIBUTE(grid_dh($1), <im_coarse>, <jm_coarse>) begin

real x_coarse(im_coarse,jm_coarse)

– In this example, x_coarse is distributed 
based on the decomposition for the 1st of the 
parameterized nest levels (nest level 2)

CSMS$DISTRIBUTE(grid_dh($2), <im_fine>, <jm_fine>) begin

real x_fine(im_fine,jm_fine)

– x_fine is distributed based on the 
decomposition for the 2nd of the 
parameterized nest levels (nest level 3)
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Nesting Directives

CSMS$PARALLEL(grid_dh($2), <i>, <j>) begin

do j = 1, jm_fine
do i = 1, im_fine

– The loops here are translated based 
on the 2nd of the parameterized nest 
levels (nest level 3)
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Nesting Directives
csms$set_transfer_interpolation( grid_dh($1), grid_dh($2), 2,
csms$> num_fine_points, fine_coords, max_coarse_points,
csms$> coarse_coords, coarse_weights, INTERP )

• This directive stores away inside SMS the indices, 
weights and communication patterns needed to 
interpolate nest grid points

• grid_dh($1) and grid_dh($2) are the (parameterized) 
decompositions

• The number “2” indicates that this is a 2-dimensional 
interpolation (although it can be executed 
symmetrically over multiple levels as is shown in the 
user’s guide)

• num_fine_points are the total number of fine points 
that have to be computed
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Nesting Directives
csms$set_transfer_interpolation( grid_dh($1), grid_dh($2), 2,
csms$> num_fine_points, fine_coords, max_coarse_points,
csms$> coarse_coords, coarse_weights, INTERP )

• max_coarse_points (4 in our example) is the number 
of coarse points used to compute each fine point

• fine_coords is the array of coordinates of fine grid 
points that are to be computed

• coarse_coords is the array of coordinates of the 
coarse grid used to compute the fine points

• coarse_weights are the weights used in the linear 
combination

• INTERP is an SMS handle that will be referenced by 
the actual TRANSFER directive (see below)
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Nesting Directives
CSMS$TRANSFER( <t_coarse, t_fine : INTERP     >
CSMS$>                      <q_coarse,q_fine: INTERP>) BEGIN

c-SMS    Serial Interpolation code here
call sms_transfer_interpolate(t_coarse, …)

CSMS$TRANSFER END

• PPP replaces the serial interpolation code 
with SMS library calls that interpolate 
nest_coarse to nest_fine using the stored 
away interpolation scheme
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Using SMS
• Overview
• Decompositions, array/loop transformations
• Resolving adjacent and global dependencies
• Partial parallelization
• Nesting
• I/O
• Building and running an SMS program
• Debugging support
• Performance optimization
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SMS Unformatted I/O

• No directives required except :
– Non-FORTRAN I/O such as DMS, use CSMS$SERIAL



December 2004 SMS Training Course 81

SMS Formatted I/O

• Handled automatically except:
– Special “print” behaviors (handle with 
CSMS$PRINT_MODE)
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Printing

• What does parallel print mean?
print *,'hello'
>> hello
>> hellohellohello
>> hhelheellollloo
>> hello

hello
hello
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Printing

• SMS supports several print behaviors (print 
modes)

• Default print mode (“ROOT”) mimics serial 
code
– One printed message per print statement

• Use CSMS$PRINT_MODE to select other print 
modes
– “ASYNC”

• Data-dependent prints
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Data-Dependent Printing
(Asynchronous Print Mode)

• “ASYNC” print mode
– Every process prints 
– No ordering or synchronization

• Print order may vary from one run to the next
– Use for prints that depend on decomposed data
CSMS$PARALLEL(dh, <i>) BEGIN

do i = 1, IM
if (x(i) .eq. 0.0) then

CSMS$PRINT_MODE(async) BEGIN
print *, 'ERROR:  x(i) is 0!'

CSMS$PRINT_MODE END

– With default print mode, error messages from 
processes other than the “ROOT” process will 
not be printed
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Using SMS
• Overview
• Decompositions, array/loop transformations
• Resolving adjacent and global dependencies
• Partial parallelization
• Nesting
• I/O
• Building and running an SMS program
• Debugging support
• Performance optimization
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Using PPP

• ppp (Command-line options) file
– Source file

ppp source_file.f
generates
source_file_sms.f
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PPP options

– --includepath=path
• Tell PPP where to look for include files
• Analogous to Fortran -I option
• Required: --includepath=$SMS/include

– $SMS is an environment variable that refers 
to the directory containing the SMS library 
you are using
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PPP options

• Suppose you put your DECLARE_DECOMP directive 
into module “my_module” and want it to be 
visible to all files that are run through PPP.  
The option –Fmodule=my_module will cause PPP to 
add “use my_module” to any subroutine processed 
by the PPP command
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PPP options

[decomp.f]
module decomp_module

CSMS$DECLARE_DECOMP(my_dh, 1)
end module decomp_module

[sub.f]
subroutine sub
use my_module

CSMS$DISTRIBUTE(my_dh, <IM>) begin
real x(IM)

CSMS$DISTRIBUTE end
return
end

ppp decomp_module.f  --> decomp_module_sms.f

ppp --Fmodule=decomp_module sub.f --> sub_sms.f
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PPP options

– --r8
• Tell PPP to assume all variables of type real are 8 bytes

• Variables declared with an explicit kind (i.e. real(kind=4) 
or real*4) will be left as is.
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PPP options
--comment      

• Lines of code that PPP would delete are, instead, left in 
as comments

csms$parallel(my_dh, <i>) begin
c-SMS do i = 1,IM

do i = start1,end1
u(i) = 0.0

end do
csms$parallel end

--CompareOnly
• Tells PPP to only translate COMPARE_VAR directives 

(discussed later)
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Compiling, Linking

• Compiling
pgf90 –c –I $SMS/include sub1_sms.f
pgf90 –c –I $SMS/include sub2_sms.f

• Linking
mpif90 –o par_code sub1_sms.o 
sub2_sms.o –L $SMS/lib  -lsms
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Running

• Running
smsRun -np 2 par_code

• par_code can be
– An SMS binary executable

– A shell script that sets some environment 
variables and then executes an SMS binary 
executable.  For example:

[par_code]
setenv CWBNFSL N04011212serial
sms_binary_nfs.exe
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Using SMS
• Overview
• Decompositions, array/loop transformations
• Resolving adjacent and global dependencies
• Partial parallelization
• Nesting
• I/O
• Building and running an SMS program
• Debugging support
• Performance optimization
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Debugging Procedure

• Establish serial baselines
• Verify parallel reproducibility

– One process
– Multiple processes

• Use “bitwise-exact" comparison
– Round-off error can mask bugs
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SMS Debugging Directives
Insert directives any place in the code to 

ensure array values are correct

Interior Region

Halo Region

compare_var

check_halo

Local Data Array
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CSMS$COMPARE_VAR
SMS Runtime Environment

Compare C

Compare A,B

Four Process Exec

executable
code

executable
code

csms$compare_var(A,B)

csms$compare_var(C)

program main

end program

One Process Exec

executable
code

executable
code

csms$compare_var(A,B)

csms$compare_var(C)

program main

end program
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Debugging Directives

• CSMS$COMPARE_VAR
– Functionality

• Verifies that variable has same values for 2 
separate runs

• Checks interior (not halo) of variable
• variables can only be a simple type (real, 
integer, etc.)

– Syntax:
CSMS$COMPARE_VAR(y, 'At Here')

• If variable does not have same values; error
msg and termination:
compare_var failed : y   At Here
Values for first, second run : 38.0   17.0
Incorrect at indices   10  13   2
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Debugging Directives

– Two execution modes
• One program

– smsRun –np 1 par_code –np 4 par_code –cv
– “-cv” says execute the COMPARE_VAR directives

• Two programs (i.e. serial and SMS parallel 
codes)
– SMS parallel code translated and compiled 
normally

– Serial code translated as follows:
ppp --CompareOnly my_prog.f

(This only translates COMPARE_VAR directives)

– smsRun –np 1 serial_code –np 1 par_code –cv
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Debugging Directives

– CSMS$COMPARE_VAR example
     subroutine s1(x,y)
     integer, parameter :: im=10 
csms$distribute(my_dh, 1) begin 
     real x(im) 
     real y(im) 
csms$distribute end 
 
csms$parallel(my_dh, <i>) begin 
     do i = 2, im – 1 
       y(i) = x(i-1) + x(i) 
     end do 
csms$compare_var(y(2:im-1), 'After I loop') 
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Debugging Directives
• CSMS$CHECK_HALO

– Functionality
• Verifies that variable halo region is up-to-
date

• If halo not up-to-date; error msg and 
termination:
Halo check failed for var:  x   Here

• Degrades performance
• Enabled when SMS_CHECK_HALO is ON

– Syntax:
CSMS$CHECK_HALO(x, 'Here')

• Syntax similar to HALO_UPDATE
• User also specifies string that indicates where 
check being made
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interior region data

CSMS$CHECK_HALO

halo region data

P3P1 P2

compare
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Debugging Directives

• CSMS$CHECK_HALO example
     subroutine s1(x,y)
     integer, parameter :: im=10 
csms$distribute(my_dh, 1) begin 
     real x(im) 
     real y(im) 
csms$distribute end 
 
csms$parallel(my_dh, <i>) begin 
 
csms$check_halo(x, 'Before i loop') 
     do i = 2, im – 1 
       y(i) = x(i-1) + x(i) 
     end do 
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Using SMS
• Overview
• Decompositions, array/loop transformations
• Resolving adjacent and global dependencies
• Partial parallelization
• Nesting
• I/O
• Building and running an SMS program
• Debugging support
• Performance optimization
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Performance Optimization

• Combine communications (aggregation)
• Optimize halo updates
• Trade communication for redundant 

computation
CSMS$HALO_COMP

• Optimize CSMS$SERIAL
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Communication Aggregation

• Combine communication operations
– Reduces number of messages

• Fewer messages = less message start-up time (latency)

• Big speed-up on high-latency machines

• Works with CSMS$HALO_UPDATE, 
CSMS$TRANSFER, and CSMS$REDUCE
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Communication Aggregation:  Before

CSMS$HALO_UPDATE(z)
      do 100 i=3,13 
         y(i) = z(i) - z(i-1) - z(i+1) - z(i-2) - z(i+2) 
  100 continue 
CSMS$HALO_UPDATE(a) 
      do 200 i=3,13 
         x(i) = a(i) + a(i-1) + a(i+1) + a(i-2) + a(i+2) 
  200 continue 
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Communication Aggregation:  After

CSMS$HALO_UPDATE(a, z)
      do 100 i=3,13 
         y(i) = z(i) - z(i-1) - z(i+1) - z(i-2) - z(i+2) 
  100 continue 
      do 200 i=3,13 
         x(i) = a(i) + a(i-1) + a(i+1) + a(i-2) + a(i+2) 
  200 continue 
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Halo Update Optimizations

• Partial halo updates
– Update inner layers of halo only

• Array section halo updates
– Limit HALO_UPDATE to selected region in non-

decomposed dimensions
• Both reduce amount of data sent
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Partial HALO_UPDATE
(Limited Halo Thickness)

Global Index

P1

4 5321 6 7

P3

11 12 151413109

P2

6 7 8 9 105 114 12

CSMS$CREATE_DECOMP(dh, <IM>, <2>)
real u(IM,JM)  ! Only i dim is     

decomposed
CSMS$HALO_UPDATE(u<1,1>)
CSMS$CHECK_HALO(u<1,1>)

y

x
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Partial HALO_UPDATE
(Array Section and Limited Halo)

y

x

CSMS$CREATE_DECOMP(dh, <IM>, <2>)

CSMS$HALO_UPDATE(u(:,2:5)<1,0>)

CSMS$CHECK_HALO (u(:,2:5)<1,0>)

do j = 2,5

do i = 1,IM

v(i,j) = u(i-1,j) + u(i,j)

Global Index

P1

4 5321 6 7

P3

11 12 151413109

P2

6 7 8 9 105 114 12
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Trade Communication For 
Redundant Computation

• CSMS$HALO_COMP
– Functionality

• Computation in the “halo” regions
• Reduces the number of HALO_UPDATEs

– Can reduce latency and amount of data 
communicated

• Halo computation is “redundant”
– Identical computation is done in the "interior" of a 

neighboring process
• Performance tradeoff

– Measure performance to evaluate tradeoff
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Trade Communication For 
Redundant Computation

• CSMS$HALO_COMP
– Syntax:
CSMS$HALO_COMP(<ddim1_lower, ddim1_upper>,
CSMS$>         <ddim2_lower, ddim2_upper>) BEGIN

Serial Loops
CSMS$HALO_COMP END

ddim1_lower is the number of halo points in the 
lower halo region for which computations should be 
executed for the first decomposed dimension

Analogously for ddim1_upper, ddim2_lower, 
ddim2_upper
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Example Without CSMS$HALO_COMP

CSMS$PARALLEL(my_dh,<i>) BEGIN
 
CSMS$HALO_UPDATE(a<1,1>) 
        do 150 i=3,8 
          y(i) = a(i) - a(i+1) - a(i-1) 
          z(i) = a(i) + a(i+1) - a(i-1) 
  150   continue 
 
CSMS$HALO_UPDATE(y<1,1>, z<1,1>) 
        do 250 i=3,8 
          x(i) = y(i)*z(i) + y(i+1)*z(i-1) + y(i-1)*z(i+1) 
  250   continue 
CSMS$PARALLEL END 
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Example Without CSMS$HALO_COMP

• Iterations for loops 150 and 250 are the same:

P2
6 7 8 9 1054Global Index

P1
4 5321 6 7

Each stencil 
centered at i
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Example With CSMS$HALO_COMP

CSMS$PARALLEL(my_dh,<i>) BEGIN
 
CSMS$HALO_UPDATE(a<2,2>) 
CSMS$HALO_COMP(<1,1>) BEGIN 
        do 150 i=3,8 
          y(i) = a(i) - a(i+1) - a(i-1) 
          z(i) = a(i) + a(i+1) - a(i-1) 
  150   continue 
CSMS$HALO_COMP END      
 
C Do not need CSMS$HALO_UPDATE(y<1,1>, z<1,1>) 
        do 250 i=3,8 
          x(i) = y(i)*z(i) + y(i+1)*z(i-1) + y(i-1)*z(i+1) 
  250   continue 
CSMS$PARALLEL END 
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Example With CSMS$HALO_COMP

• Iterations for loop 250 remain the same
• Iterations for loop 150 change as follows:

Redundant 
computation

P2
6 7 8 9 1054Global Index

P1
4 5321 6 7
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More Efficient Version of
CSMS$SERIAL

C Assume X and Y are decomposed
 
CSMS$SERIAL(<x, in>, <y, out> : default=ignore) BEGIN 
      do i = 1, IM 
        y(i) = x(i) 
      end do 
 
CSMS$SERIAL END 

In this efficient version, x is gathered, 
y is scattered but there is no other 
communication

With normal SERIAL, additionally “y” 
would be gathered, “x” would be scattered 
and “i” would be broadcast
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Questions?
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